The multiassembly problem: reconstructing multiple transcript isoforms from EST fragment mixtures.
نویسندگان
چکیده
Recent evidence of abundant transcript variation (e.g., alternative splicing, alternative initiation, alternative polyadenylation) in complex genomes indicates that cataloging the complete set of transcripts from an organism is an important project. One challenge is the fact that most high-throughput experimental methods for characterizing transcripts (such as EST sequencing) give highly detailed information about short fragments of transcripts or protein products, instead of a complete characterization of a full-length form. We analyze this "multiassembly problem"-reconstructing the most likely set of full-length isoform sequences from a mixture of EST fragment data-and present a graph-based algorithm for solving it. In a variety of tests, we demonstrate that this algorithm deals appropriately with coupling of distinct alternative splicing events, increasing fragmentation of the input data and different types of transcript variation (such as alternative splicing, initiation, polyadenylation, and intron retention). To test the method's performance on pure fragment (EST) data, we removed all mRNA sequences, and found it produced no errors in 40 cases tested. Using this algorithm, we have constructed an Alternatively Spliced Proteins database (ASP) from analysis of human expressed and genomic sequences, consisting of 13,384 protein isoforms of 4422 genes, yielding an average of 3.0 protein isoforms per gene.
منابع مشابه
Differential Repression of Alternative Transcripts: A Screen for miRNA Targets
Alternative polyadenylation sites produce transcript isoforms with 3' untranslated regions (UTRs) of different lengths. If a microRNA (miRNA) target is present in the UTR, then only those target-containing isoforms should be sensitive to control by a cognate miRNA. We carried out a systematic examination of 3' UTRs containing multiple poly(A) sites and putative miRNA targets. Based on expressed...
متن کاملAn expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs
Reconstructing full-length transcript isoforms from sequence fragments (such as ESTs) is a major interest and challenge for bioinformatic analysis of pre-mRNA alternative splicing. This problem has been formulated as finding traversals across the splice graph, which is a directed acyclic graph (DAG) representation of gene structure and alternative splicing. In this manuscript we introduce a pro...
متن کاملTISA: tissue-specific alternative splicing in human and mouse genes.
Alternative splicing (AS) is a mechanism by which multiple transcripts are produced from a single gene and is thought to be an important mechanism for tissue-specific expression of transcript isoforms. Here, we report a novel graphing method for transcript reconstruction and statistical prediction of tissue-specific AS. We applied three selection steps to generate the splice graph and predict t...
متن کاملMinimum Factorization Agreement of Spliced ESTs
Producing spliced EST sequences is a fundamental task in the computational problem of reconstructing splice and transcript variants, a crucial step in the alternative splicing investigation. Now, given an EST sequence, there can be several spliced EST sequences associated to it, since the original EST sequences may have different alignments against wide genomic regions. In this paper we address...
متن کاملCaenorhabditis elegans Operons Contain a Higher Proportion of Genes with Multiple Transcripts and Use 3′ Splice Sites Differentially
RNA splicing generates multiple transcript isoforms from a single gene and enhances the complexity of eukaryotic gene expression. In some eukaryotes, operon exists as an ancient regulatory mechanism of gene expression that requires strict positional and regulatory relationships among its genes. It remains unknown whether operonic genes generate transcript isoforms in a similar manner as non-ope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2004